101 research outputs found

    Dual-plane coupled phase retrieval for non-prior holographic imaging

    Get PDF
    AbstractAccurate depiction of waves in temporal and spatial is essential to the investigation of interactions between physical objects and waves. Digital holography (DH) can perform quantitative analysis of wave–matter interactions. Full detector-bandwidth reconstruction can be realized based on in-line DH. But the overlapping of twin images strongly prevents quantitative analysis. For off-axis DH, the object wave and the detector bandwidth need to satisfy certain conditions to perform reconstruction accurately. Here, we present a reliable approach involving a coupled configuration for combining two in-line holograms and one off-axis hologram, using a rapidly converging iterative procedure based on two-plane coupled phase retrieval (TwPCPR) method. It realizes a fast-convergence holographic calculation method. High-resolution and full-field reconstruction by exploiting the full bandwidth are demonstrated for complex-amplitude reconstruction. Off-axis optimization phase provides an effective initial guess to avoid stagnation and minimize the required measurements of multi-plane phase retrieval. The proposed strategy works well for more extended samples without any prior assumptions of the objects including support, non-negative, sparse constraints, etc. It helps to enhance and empower applications in wavefront sensing, computational microscopy and biological tissue analysis

    Encoding multiple holograms for speckle-noise reduction in optical display.

    Get PDF
    In digital holography (DH) a mixture of speckle and incoherent additive noise, which appears in numerical as well as in optical reconstruction, typically degrades the information of the object wavefront. Several methods have been proposed in order to suppress the noise contributions during recording or even during the reconstruction steps. Many of them are based on the incoherent combination of multiple holographic reconstructions achieving remarkable improvement, but only in the numerical reconstruction i.e. visualization on a pc monitor. So far, it has not been shown the direct synthesis of a digital hologram which provides the denoised optical reconstruction. Here, we propose a new effective method for encoding in a single complex wavefront the contribution of multiple incoherent reconstructions, thus allowing to obtain a single synthetic digital hologram that show significant speckle-reduction when optically projected by a Spatial Light Modulator (SLM)

    Microplastic Identification via Holographic Imaging and Machine Learning

    Get PDF
    Microplastics (MPs) are a major environmental concern due to their possible impact on water pollution, wildlife, and the food chain. Reliable, rapid, and high‐throughput screening of MPs from other components of a water sample after sieving and/or digestion is still a highly desirable goal to avoid cumbersome visual analysis by expert users under the optical microscope. Here, a new approach is presented that combines 3D coherent imaging with machine learning (ML) to achieve accurate and automatic detection of MPs in filtered water samples in a wide range at microscale. The water pretreatment process eliminates sediments and aggregates that fall out of the analyzed range. However, it is still necessary to clearly distinguish MPs from marine microalgae. Here, it is shown that, by defining a novel set of distinctive "holographic features," it is possible to accurately identify MPs within the defined analysis range. The process is specifically tailored for characterizing the MPs' "holographic signatures," thus boosting the classification performance and reaching accuracy higher than 99% in classifying thousands of items. The ML approach in conjunction with holographic coherent imaging is able to identify MPs independently from their morphology, size, and different types of plastic materials

    Label-Free Intracellular Multi-Specificity in Yeast Cells by Phase-Contrast Tomographic Flow Cytometry

    Get PDF
    : In-flow phase-contrast tomography provides a 3D refractive index of label-free cells in cytometry systems. Its major limitation, as with any quantitative phase imaging approach, is the lack of specificity compared to fluorescence microscopy, thus restraining its huge potentialities in single-cell analysis and diagnostics. Remarkable results in introducing specificity are obtained through artificial intelligence (AI), but only for adherent cells. However, accessing the 3D fluorescence ground truth and obtaining accurate voxel-level co-registration of image pairs for AI training is not viable for high-throughput cytometry. The recent statistical inference approach is a significant step forward for label-free specificity but remains limited to cells' nuclei. Here, a generalized computational strategy based on a self-consistent statistical inference to achieve intracellular multi-specificity is shown. Various subcellular compartments (i.e., nuclei, cytoplasmic vacuoles, the peri-vacuolar membrane area, cytoplasm, vacuole-nucleus contact site) can be identified and characterized quantitatively at different phases of the cells life cycle by using yeast cells as a biological model. Moreover, for the first time, virtual reality is introduced for handling the information content of multi-specificity in single cells. Full fruition is proofed for exploring and interacting with 3D quantitative biophysical parameters of the identified compartments on demand, thus opening the route to a metaverse for 3D microscopy

    3D imaging lipidometry in single cell by in-flow holographic tomography

    Get PDF
    The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characteriza- tion in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limit- ing analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions

    Seismic emergency in Molise (2018). Preliminary report of the SISMIKO task force.

    Get PDF
    Il 16 agosto 2018 alle ore 18:19:04 UTC un terremoto di magnitudo ML 5.2 (Mw 5.1) è stato ben risentito in un’ampia area che comprende molte regioni del Centro Sud Italia. I sismologi in turno presso la sala di monitoraggio e sorveglianza sismica dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) hanno localizzato l’evento in provincia di Campobasso, a 4 km a Sud-Est di Montecilfone e ad una profondità inizialmente calcolata di 9 km. Nella stessa area si era verificato due giorni prima, il 14 agosto alle ore 23.48 italiane un terremoto di Mw 4.6 anch’esso ben risentito (i dettagli dell’evento sono reperibili alla pagina [http://cnt.rm.ingv.it/event/20375681]). A seguito dell’evento di magnitudo Mw 5.1 e della sequenza ad esso associata, come in ogni emergenza di questo tipo, è stato attivato il Gruppo Operativo SISMIKO [Moretti et al., 2012; 2016; Pondrelli et al., 2016] per l’installazione di alcune stazioni sismiche temporanee ad integrazione di quelle permanenti della Rete Sismica Nazionale (RSN [Michelini et al., 2016]) presenti nella regione.Il 16 agosto 2018 alle ore 18:19:04 UTC un terremoto di magnitudo ML 5.2 (Mw 5.1) è stato ben risentito in un’ampia area che comprende molte regioni del Centro Sud Italia [http://cnt.rm.ingv.it/event/20375681]. I sismologi, in turno presso la sala di monitoraggio e sorveglianza sismica dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV), hanno localizzato l’evento in provincia di Campobasso, a 4 km a Sud-Est di Montecilfone. Nella stessa area si era verificato due giorni prima, il 14 agosto alle ore 21.48 UTC un terremoto di Mw 4.6 [http://cnt.rm.ingv.it/event/20362671]. A seguito dell’evento di magnitudo Mw 5.1 e della sequenza ad esso associata, come avviene in questi casi, si è attivato il Gruppo Operativo SISMIKO [Moretti et al., 2012; 2016; Pondrelli et al., 2016] per l’installazione di stazioni sismiche temporanee ad integrazione di quelle permanenti della Rete Sismica Nazionale (RSN [Michelini et al., 2016; http://cnt.rm.ingv.it/instruments/network/IV]) presenti nella regione.Published1SR. TERREMOTI - Servizi e ricerca per la Societ

    SISMIKO:emergency network deployment and data sharing for the 2016 central Italy seismic sequence

    Get PDF
    At 01:36 UTC (03:36 local time) on August 24th 2016, an earthquake Mw 6.0 struck an extensive sector of the central Apennines (coordinates: latitude 42.70° N, longitude 13.23° E, 8.0 km depth). The earthquake caused about 300 casualties and severe damage to the historical buildings and economic activity in an area located near the borders of the Umbria, Lazio, Abruzzo and Marche regions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) located in few minutes the hypocenter near Accumoli, a small town in the province of Rieti. In the hours after the quake, dozens of events were recorded by the National Seismic Network (Rete Sismica Nazionale, RSN) of the INGV, many of which had a ML > 3.0. The density and coverage of the RSN in the epicentral area meant the epicenter and magnitude of the main event and subsequent shocks that followed it in the early hours of the seismic sequence were well constrained. However, in order to better constrain the localizations of the aftershock hypocenters, especially the depths, a denser seismic monitoring network was needed. Just after the mainshock, SISMIKO, the coordinating body of the emergency seismic network at INGV, was activated in order to install a temporary seismic network integrated with the existing permanent network in the epicentral area. From August the 24th to the 30th, SISMIKO deployed eighteen seismic stations, generally six components (equipped with both velocimeter and accelerometer), with thirteen of the seismic station transmitting in real-time to the INGV seismic monitoring room in Rome. The design and geometry of the temporary network was decided in consolation with other groups who were deploying seismic stations in the region, namely EMERSITO (a group studying site-effects), and the emergency Italian strong motion network (RAN) managed by the National Civil Protection Department (DPC). Further 25 BB temporary seismic stations were deployed by colleagues of the British Geological Survey (BGS) and the School of Geosciences, University of Edinburgh in collaboration with INGV. All data acquired from SISMIKO stations, are quickly available at the European Integrated Data Archive (EIDA). The data acquired by the SISMIKO stations were included in the preliminary analysis that was performed by the Bollettino Sismico Italiano (BSI), the Centro Nazionale Terremoti (CNT) staff working in Ancona, and the INGV-MI, described below

    Le attività del gruppo operativo INGV "SISMIKO" durante la sequenza sismica "Amatrice 2016",

    Get PDF
    SISMIKO è un gruppo operativo dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) che coordina tutte le Reti Sismiche Mobili INGVPublishedLecce3T. Sorgente sismica4T. Sismicità dell'Italia8T. Sismologia in tempo reale1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto3SR TERREMOTI - Attività dei Centr

    Compressed Sensing: a new framework for signals recovery and its application in Digital Holography

    Get PDF
    In olografia digitale l'informazione di ampiezza e fase del fronte d'onda di un oggetto può essere ottenuta quantitativamente e analizzata in digitale attraverso la simulazione numerica delle leggi di diffrazione. Partendo da questo, sono state realizzate molte applicazioni di grande interesse in campo ottico, come l'imaging microscopico a contrasto di fase, la recognition di oggetti 3D e il display dinamico di ologrammi in 3D. In ogni caso, la qualità di queste elaborazioni dipende fortemente dalla qualità degli ologrammi da processare, in particolare dipende dal rumore che il processo di acquisizione di un ologramma introduce sul fronte d'onda registrato. Le tecniche che vengono, attualmente, applicate sugli ologrammi e sulle loro ricostruzioni numeriche per ottimizzarne la qualità, sono tipiche dell'image processing. Molte di esse permettono di ridurre o sopprimere il rumore, che nel caso specifico di ologrammi digitali, è composto da una mistura di due componenti: un rumore additivo Gaussiano, non correlato all'ologramma, e un rumore moltiplicativo di tipo speckle. Ad esempio i metodi classici basati su trasformata di Fourier e trasformata wavelet sono stati ampiamente studiati, ma possono essere applicati solo nei rispettivi domini trasformati. Inoltre, tali metodi sono fortemente influenzati dal cambiamento di alcuni parametri del fronte d'onda da elaborare, come ad esempio la frequenza, l'ampiezza etc. Al fine di superare efficacemente i limiti evidenziati da i più comuni algoritmi di denoising, risulta fondamentale la realizzazione di algoritmi di ricostruzione che siano robusti nelle diverse condizioni in cui un ologramma può essere acquisito. A tal fine, questo lavoro di tesi propone un nuovo metodo di denoising per ologrammi digitali, molto robusto ed efficiente, basato sulla tecnica del Compressed Sensing (CS). Il CS è una procedura per l'acquisizione e ricostruzione di segnali che possono essere rappresentati in forma sparsa in un opportuno dominio trasformato. Dopo un inizio lento, questo tema ha acquisito un'elevata risonanza, ed attualmente, ha un impatto scientifico molto forte grazie al riconoscimento che, in natura, molti segnali, se proiettati in un opportuno dominio, ammettono una rappresentazione sparsa. Sfruttando questa sparsità, si può ottenere una migliore approssimazione della funzione distorsione-tasso di un segnale, e fornire linee guida per realizzare un’efficiente ed efficace fase acquisizione e di denoising del segnale, come verrà dimostrato in questa tesi. Nonostante il grande impatto che questo framework ha avuto nella comunità scientifica, la chiave per una comprensione più profonda di questa tecnica è l'identificazione dei limiti fondamentali nei processi di ricostruzione e denoising. Questa tesi si propone di analizzare questi aspetti per segnali particolari, quali sono gli ologrammi digitali, fornendo una procedura standard per un’efficiente ricostruzione numerica a valle di un processing mirato all'eliminazione delle componenti di rumore. L'algoritmo di denoising progettato ed implementato, risulta molto efficace e robusto nella rimozione del rumore che corrompe gli ologrammi digitali, come dimostrano da diversi esempi sperimentali. Infatti il metodo è stato testato per diversi ologrammi, acquisiti in diverse condizioni sperimentali, ed in ogni caso i risultati si sono rivelati eccellenti, il che dimostra la bontà e la robustezza del metodo proposto. Inoltre è stato analizzato l'effetto di denosing attraverso la proiezione degli ologrammi processati, per vedere e quantificare i miglioramenti che questa tecnica produce nel display 3D di ologrammi
    corecore